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ABSTRACT £

y e
A simple linear programming formulation is given for finding an ,Egrballf..
A b ,“.

with largest radius contained in a polyhedral set defined by m 1linear ﬂ
inequalities. The linear program also has m 1linear constraints similar to 4
.
.
those defining the set. It is shown that finding the largest ball is not much -&

more difficult than finding a feasible point. When the center of ball is R
fixed, the largest radius is easily obtained as the smallest of m ratios. A
The results can be extended to balls defined by other norms such as elliptic

NOIms.
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SIGNIF1CANCE AND EXPLANATION

Finding the largest ball or hypercube in a polyhedral set has many

applications in operations research. This work gives a simple linear

programming formulation for solving the problem. The effort needed to solve

e v
P

the linear program is almost the same as that for finding a feasible point in
the given polyhedral set. Hence the result of this work can be considered

optimal.

jF

4
e

The responsibility for the wording and views expressed in this descriptive
,. summary lies with MRC, and not with the author of this report.
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FINDING THE LARGEST QP‘BALL IN A POLYHEDRAL SET

Tzong-Huei Shiau

1. Introduction

polyhedral set F Rn, where

.
‘s

S

H

K

.

:

o4

Wwe consider the problem of finding the largest 2P-pa11 B(y,Yip) contained in a A
n T . N
F={xer | axg<b for i=12,...m , j

0¥ a; e R", bi € R, the superscript T denotes matrix transposition and afx is

therefore the inner product of a; and x. For y € Rn, Y€R and 1< p < =, the

i
£P-pall with center y and radius Y is defined by
Bly,Y:p) := {y + vz | |z|p < 1}  where
n 1/p
.= Y p <
o =1 - (izl Iz, %) 1¢pcw
max ]zi| p=%° .

B(y,Y;p) is an ordinary ball for p = 2. For p =%, it is a hypercube. Intuitively
if F contains no interior points the largest ball will have Y = 0, otherwise Y > O
(including the case Y = +®). Since the 2P-bal1l s convex, B(y,Yip) ¢ F if and only
if F contains all the extreme points of B(y,Ysp!. In the case that p = +°, Bly,Y:p)
has 2" extreme pcints,

gy +y2K, k= 1,2,...,2°

where zK = [21.11,...,11]T- Therefore the problem of finding the largest ball can be

formulated as

(2) max y subject to ag(y + v25) £bj,i=1..0,m k= ,...,2" .
(y,Y)
i sSponsored by the United States Army under Contract No. DAAG29-80-C-0041. This material is
- ’ based upon work supported by the National Science Foundation under Grant No. DMS=-8210950,
q Mod. 1.
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Although this is a linear program, it contains 2 *mr constraints. Hence (2) is

practically intractable even when n 1is as small as 20.

In this paper, we give a linear program formulation with only m constraints. The
linear program {(see (5)) is very similar to and no more difficult than the following
formulation for finding a feasible point in F.

max Y subject to afy -y £ bi i=1...,m .,
(y,Y)

Hence the problem can be solved by efficient algorithms such as Dantzig's simplex method
or, if the problem is large and sparse, Mangasarian's SOR method [6]). This result also
shows that theoretically the problem is polynomial-time solvable (3], (4]). It is
interesting to note that finding the smallest ball containing F is much more difficult.
Depending on the norm used, it can be NP-complete {7], which means that if one can solve it
in polynomial time then he can solve also in polynomial time hundreds of those intractable
problems such as traveling salesman problem (2] or non-convex linear complementarity
problems [1]. These problems are considered intractable because as it is widely believed,

but not proven, that no polynomial-time algorithms exist for solving them.

2. LP Formulation
The problem can be written as

(3) maximize Y subject to B(y,Y,p) c F
(y,Y)

For i =1,2,...,m, define the function gi(y.Ylp) by

(4) gi(y,Yyp) = max afx - bi subject to x € B(y,Y:;p) .
x

It is easy to see that the constraint in (3) can be replaced by m constraints

g,(y,Yip) £ 0 i=1,2,...,m.

Lemma 1: B(y,Y;p) ¢ F if and only if gi(y,Y;p) £0 for i=1,2,...,m.

Proof : Bly,Y:;p) ¢ F

iff

o o o

R P L




afx - bi ¢ 0 for all x € B(y,Y:;p) for i =12,...,m

iff
(max a}‘x - bi < 0 subject to x € B(y,Y;p)] for i =1,2,¢0.,m -
x o
iff ’

9;ly,vYip) £0 for i =1,2,...,m .

D ‘-

. 1 1 .

! Lemma 2. For 1< p <, g,(y,Yip) = a?y - by + t-,ailq where 5 + 3 =1, 5

C

Proof: For all x € B(y,Yip), lx-yl € Y and >

-

- T _ T, _ T
; ajx - b, = ajy b, + ai(x y) .
T T -

< ajy -~ b; + lailq . Ix-ylp € ajy - by + Y-lailq . K

Hence g;(y,Y:p) £ azy - by + Y.lailq' On the other hand, it is well-known that

equalities hold for some x € B(y,Y;p). Hence g;(y,Yip) = afy - bi + r-lailq. To make

P

(] the paper self-contained, we shall give the definition of x. Let ) denote the j-th
component of a;, define
+1 if aij 29
€, = 3 =1,2,cee,n .
J -1 if a <0
1]

Cage p =®, q= 1. x =y + Yz where zj = ej, J = 1,e0e,n,

PR3

n n
so aT(x-y) =y ajjz3 = Y ) laijl = Y'|ai|1 .
=1 521

N )

Cagse p =1, q=*. x :=y+ Yckek where k 18 an index that

Iailw = ’aikl and e, 1is the k-th unit vector.
= Y - 1a=1 .
Case 1 < p<® x :=y+ T;T; z where z4 |aiJ| €y
- 1/p /p
So |z|p = (z |aij|(q 1)p] = (z laijlq] since (q~1) » p = q, and thereby,
-3~




L i e as . .

y_ . . .y . A 9.y . q,1-1/p
-1—21; Z|a13| |a13| Y -’a;}:lal:’l Y (X|aU )

aT(x-y)

e (Zla. [ HVI -y . |a .
Yoo a1 LAMRE I

It follows that (3) is equivalent to

(5) maximize Y subject to afy + Y'Ia,|

S$b.,,i=12,...,m .,
i 1
(y,Y) q

We summarize the results in the followsing:

Theorem 1. For any given a b,

5 ¢ i=1,2,¢e.,m

il
(i) The linear program (5) is feasible.

* *
(ii) Assume that the linear program (5) is bounded, and that (y ,Y ) is an

*
optimal solution with Y < +®, Then

i

(a) Y < 0 if and only if F ¢.

(b) ¥

0 if and only if F # ¢ but F has empty interior.
{(c) Y >0 if and only if F° # ¢ and B(y',Y';p) is an £P-ball contained

in F with the largest radius.

Proof. Since (5) is equivalent to (3) by lLemma 1, 2. The theorem follows by the following

observations.
(i) (0,-K) 1is feasible for K sufficiently large.
(ii) (y,0) 1is feasible for all y € F.
(iii) F has non-empty interior if and only if F contains a ball B(y,y:;p) with

Y > 0.
O

*
Remarks (i) If Y = +» then F has unbounded interior. But the reverse is not true.

For example, let

F = {(x1,x2)|x1 - x, € 1, =-x

2 3 %y 8 0} .

The same example also shows that y' is not unique.

-




(ii) Given y € F, the largest ball contained in F and centered at y can be -t

found by solving

max Y s.t. Y°*|
Y

T .
e < - : 1,000
%ijlq = by =~ ajy, 1=1, o

which can be solved explicitly, namely,

. b,-a?y
(6) Y = min - .

a d

1€i<m i'q -

S

3. General Norms -
L

From the derivation of (5) in the previous section, it is clear that the results can -

Cy
be generalized to other norms. That is, find a largest ball B(y,Y) = {x | Ix—y] < v} %1
in F is equivalent to ' T

T *

(7) max Y s.t. ajy + Y-Iail £by, i=1,...,m )
(y.Y) L.
where Iai|. is the dual norm of l'l, namely Tw’
b

- T S

(8) laj|” = max ajz s.t. |z] <1 . N
Of course, to make (7) useful computationally, we need to be able to solve (8), as in T

Section 2. For example, if |z| := (zTAz)1/2 where & 1is a symmetric positive definite

matrix, then by Kuhn-Tucker Theorem (5] we have

-
la.| = max az s.t. zTAz <1
i i
z
(9)

= (a?A_1aA)1/2 .
1 pu

Note that in this case, a "ball"” is in fact an ellipsoid. Hence one can find the largest
ellipscid (with a given shape defined by A) in F by solving a linear program. When the
is

center is fixed, the largest ellipsoid can easily be found by (6) in which [ailq

replaced by (a?A-1ai)1/2.
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